Test on the Structure of Biological Sequences via Chaos Game Representation
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1 Chaos Game Representation

The CGR is both a graphical representation method of sequences and a storage tool. This iterative
mapping technique was apparently for the first time applied to genomic sequences by Jeftrey [2].
From a given sequence —e.g. nucleotides in a DNA sequence or amino acids in a protein— one can
define trajectories in a bounded set conserving all its statistical properties. Each point of the
CGR contains the whole history of the sequence. One of the central goals of Cénac et al. [1]
is to figure out whether the CGR provides more information than the classical methods based on

word-counting.

Definitions

O U =wuy...u, asequence of letters in a d-letter alphabet A.

[1 The Chaos Game Representation of U, on a bounded Borel set S C R? is a sequence

{ Xy, ..., X, } defined by
[ X €S
< X’i+1 — Q(X’l €Ui+1) = Tqu(X,,;),
for 0 <0 < 1.
[ Jeffrey’s definition for DNA sequences, A ={A,C,G,T}
S = [07 1[27 — %7 X0 = (%7 %)
by = ( 70)7 EC: (07 1)7 gG: (171)7 by = (170)

def

(0 Counting points in Sw = Y4, 07750, + 0'S < counting occurrences of the word w.
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Figure 1 : On the left, CGR of the 10 first nucleotides ATGCGAGTGT of the £. Coli threonine gene. Point number 3
corresponds to the first 3-letter word AT'G. It is located in the corresponding quadrant. The second 3-letter word T'GC
corresponds to point 4 and so on. On the right, CGR of a sequence of length 80000 of E. Col.

Stochastic properties of the CGR

[1 U is supposed to be a stationary ergodic sequence.

[0 (X,)n>0 is a Markov chain of order 1, and converges almost surely to a random vector
X with distribution 7.

[1 When U is i.i.d. and uniformly distributed, 7 is the Lebesgue measure on S. Whenever S is
not uniformly distributed, 7 is continuous, singular with respect to the Lebesgue measure. The
law of large number holds, and the empirical measures converge.

Characterization of Structure

1 For any word w = uy ... u; and for any set B C S, Bw =T, o---0T, (B).

Proposition 1.1. The stationary random sequence U 1s

[l an 2.1.d. sequence if and only if

m(Bu) = n(B)r(Su), Yue A VBCS.

O a Markov chain of order m if and only if VB C S, Vw € A™, Vu € A,

m(Bwu) w(Swu)
— B m .
W(Bw) 7T(S”LU) ’ \V/ CS, \V/”LUEA , \V/UEA
7(Bwu)

In particular the ratio ~(Bu) does not depend on B.

[1 Characterization of independence and of Markov chains

L] construction of a test.
[] genomic signature (see Cénac et al. [1])

2 Testing the structure of a sequence

1 Hy: “U=wuy...uy 18 an t.1.d. sequence’

1 H,,: “Uis a Markov chain of order m”

1 H : "U 1s a stationary ergodic sequence

[1 Construction

Denoting go(d) the (1 — a)-quantile of the chi-square distribution x“(d), and
T(E) = 137 1ypy(X;) the empirical measure of m, for any partition {Bj,..., Bg} of
S, with K' > 1, the following sets are reject region with asymptotic level «, of a test of H

against H \ Hy and respectively of H,, against H \ H,,

\

> qa|(d = (K = 1)] ¢,

/

n(#4(Bv) — #u(B)a(Sv))
T, (B)7,(Sv)

1<i<K

”UEA
\

> 0 [dm(d _ 1)K — 1)] s

/

n (ﬁn(Sw)ﬁn(Bwu) — ﬁn(S’LUU)ﬁn(Bw)) 2
7t (Sw)7tn (Swu) 7, ( Bw)

quAmXA
1<i<k
(1 Consistence

Next, assume that H \ Hy (tesp. H \ H,, ) holds, and let B ¢ S, w € A% and v € A be such
that

[]

w(Bv) # w(B)m(Sv).
L1 respectively
m(Sw)mw(Bwu) # w(Bw)r(Swu).
If B is one of the set forming the partition, then the test is asymptotically consistent.

For this test, Reinert et al. 3] propose to make use of Pearson statistics. In the special case when
the partition is {Su,u € A}, the tests are asymptotically the same.

3 Numerical experiments
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Figure 2 : The 4 different partitions of the square [0, 1[* arbitrary chosen for the test.

We did generate 1000 sequences of length n of Markov chains of order m with random transition
matrix, for various values of n.

order n Pearson BY B2 | BG) order n Pearson B% | BU
0 100 4.2% 3.6% | 3.4% | 2.5% 1 500 5.2% 5.4% | 3.6%
500 6.1% 4.8% | 4.8% | 3.8% 1000 4.1% 5.2% | 5.4%
1000 5.0% 56% | 6.2% | 5.3% 10000|  5.3% 6.4% | 6.0%
10000  6.5% 4.8% | 5.1% | 7.7% 2 100 60.8% 125.8% 1.3%
1 100 86.4% 112.9% 51.1% 28.9% 500 100%  198.4% 91.6%
500 100% 154.2% 98.7% 94.5% 1000 100%  199.9% 99.6%
1000 100% 170.9%199.9% 99.0% 10000| 100% | 100% | 100%
10000 100% 97.6% 100% | 100% 4 500 22.8% 120.2%30.3%
5 1000 8.6% 6.8% 8.6 % |84 % 1000 51.0% 144.3% 69.7%
10000 54.6% 128.7%55.6% 85.3% 5000 99.9% 199.6%  100%
80000 99.4% 84.5%199.6% | 100% 10000| 100% | 100% | 100%
2 mixed 500 58% 116.5% 49.9% 76.8% 3 mixed | 500 54%  129.6% 48.5%
1000 7.0% 126.9% 73.7% 95.1% 1000 8.1% 155.6% 79.3%
10000 7.3% 73.2%199.8% | 100% 5000 8.3% 196.4% 99.8%
5 mixed | 80000 5.8% 129.7%|76.7% | 85.8% 100001  6.3% 199.0% 100%

Table 1 : The left (resp. right) hand side of the following Table shows the fraction of cases when Hy (resp. Hj) is rejected.

The choice of the partition is crucial.

The reject of long dependence Markov chains increases with the size ot the partition.

In the special case of markov chains of order-m given by the aggregation of m indepedent markov

chains of order 1, the CGR-based test behaves pretty well. This illustrates the strength of
the CGR: it does not impose any constraint on the input sequence besides stationarity.
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