Test on the Structure of Biological Sequences via Chaos Game Representation

Peggy Cénac

INRIA Domaine du Voluceau, B.P. 105, 78 153 Le Chesnay Cedex (France) Peggy.Cenac@inria.fr

1 Chaos Game Representation

2 Testing the structure of a sequence

The CGR is both a graphical representation method of sequences and a storage tool. This iterative mapping technique was apparently for the first time applied to genomic sequences by Jeffrey [2]. From a given sequence –e.g. nucleotides in a DNA sequence or amino acids in a protein– one can define trajectories in a bounded set conserving all its statistical properties. **Each point of the CGR contains the whole history** of the sequence. One of the central goals of Cénac *et al.* [1] is to figure out whether the CGR provides more information than the classical methods based on word-counting.

Definitions

 $\succ U = u_1 \dots u_n$ a sequence of letters in a *d*-letter alphabet \mathcal{A} .

The Chaos Game Representation of U, on a bounded Borel set $S \subset \mathbb{R}^q$ is a sequence $\{X_0, \ldots, X_n\}$ defined by

$$\begin{cases} X_0 \in S \\ X_{i+1} = \theta \left(X_i + \ell_{u_{i+1}} \right) \stackrel{\text{\tiny def}}{=} T_{u_{i+1}}(X_i), \end{cases}$$

for $0 < \theta < 1$.

> Jeffrey's definition for DNA sequences, $\mathcal{A} = \{A, C, G, T\}$:

$$\begin{cases} S = [0, 1]^2, & \theta = \frac{1}{2}, \quad X_0 = (\frac{1}{2}, \frac{1}{2}) \\ \ell_A = (0, 0), & \ell_C = (0, 1), \quad \ell_G = (1, 1), \quad \ell_T = (1, 0) \end{cases}$$

 \succ Counting points in $Sw \stackrel{\text{\tiny def}}{=} \sum_{k=1}^{i} \theta^{i-k+1} \ell_{u_k} + \theta^i S \Leftrightarrow$ counting occurrences of the word w.

- H_0 : " $U = u_1 \dots u_N$ is an i.i.d. sequence"
- $H_m: "Uis a Markov chain of order m"$
- H : "U is a stationary ergodic sequence

\succ <u>Construction</u>

Denoting $q_{\alpha}(d)$ the $(1 - \alpha)$ -quantile of the chi-square distribution $\chi^2(d)$, and $\hat{\pi}_n(E) \stackrel{\text{def}}{=} \frac{1}{n} \sum_{j=1}^n \mathbb{1}_{\{E\}}(X_j)$ the empirical measure of π , for any partition $\{B_1, \ldots, B_K\}$ of S, with K > 1, the following sets are reject region with asymptotic level α , of a test of H_0 against $H \setminus H_0$ and respectively of H_m against $H \setminus H_m$

$$\left\{\sum_{\substack{1\leq i\leq K\\v\in\mathcal{A}}}\frac{n\left(\hat{\pi}_n(Bv)-\hat{\pi}_n(B)\hat{\pi}_n(Sv)\right)^2}{\hat{\pi}_n(B)\hat{\pi}_n(Sv)} > q_{\alpha}\left[(d-1)(K-1)\right]\right\},$$
$$\sum_{\substack{wu\in\mathcal{A}^m\times\mathcal{A}\\1\leq i\leq k}}\frac{n\left(\hat{\pi}_n(Sw)\hat{\pi}_n(Bwu)-\hat{\pi}_n(Swu)\hat{\pi}_n(Bw)\right)^2}{\hat{\pi}_n(Sw)\hat{\pi}_n(Swu)\hat{\pi}_n(Bw)} > q_{\alpha}\left[d^m(d-1)(K-1)\right]\right\},$$

\succ <u>Consistence</u>

Next, assume that $H \setminus H_0$ (resp. $H \setminus H_m$) holds, and let $B \subset S$, $w \in \mathcal{A}^d$ and $v \in \mathcal{A}$ be such that

$\pi(Bv) \neq \pi(B)\pi(Sv).$

Figure 1 : On the left, CGR of the 10 first nucleotides ATGCGAGTGT of the *E. Coli* threonine gene. Point number 3 corresponds to the first 3-letter word ATG. It is located in the corresponding quadrant. The second 3-letter word TGC corresponds to point 4 and so on. On the right, CGR of a sequence of length 80000 of *E. Coli*.

Stochastic properties of the CGR

- > U is supposed to be a stationary ergodic sequence.
- $> (X_n)_{n \ge 0}$ is a Markov chain of order 1, and converges almost surely to a random vector X with distribution π .
- > When U is i.i.d. and uniformly distributed, π is the Lebesgue measure on S. Whenever S is not uniformly distributed, π is continuous, singular with respect to the Lebesgue measure. The law of large number holds, and the empirical measures converge.

Characterization of Structure

➤ For any word $w = u_1 \dots u_i$ and for any set $B \subset S$, $Bw \stackrel{\text{\tiny def}}{=} T_{u_i} \circ \dots \circ T_{u_1}(B)$.

Proposition 1.1. The stationary random sequence U is

respectively

$\pi(Sw)\pi(Bwu)\neq\pi(Bw)\pi(Swu).$

If B is one of the set forming the partition, then the test is asymptotically consistent.

For this test, Reinert *et al.* [3] propose to make use of Pearson statistics. In the special case when the partition is $\{Su, u \in A\}$, the tests are asymptotically the same.

3 Numerical experiments

Figure 2 : The 4 different partitions of the square $[0, 1]^2$ arbitrary chosen for the test.

We did generate 1000 sequences of length n of Markov chains of order m with random transition matrix, for various values of n.

der	n	Pearson	$B^{(1)}$	$B^{(2)}$	$B^{(3)}$	order	n	Pearson	$B^{(2)}$	
0	100	4.2%	3.6%	3.4%	2.5%	1	500	5.2%	5.4%	
	500	6.1%	4.8%	4.8%	3.8%		1000	4.1%	5.2%	
	1000	5.0%	5.6%	6.2%	5.3%		10000	5.3%	6.4%	
	10000	6.5%	4.8%	5.1%	7.7%	2	100	60.8%	25.8%	1
1	100	86.4%	12.9%	51.1%	28.9%		500	100%	98.4%	i
	500	100%	54.2%	98.7%	94.5%		1000	100%	99.9%	i
	1000	100%	70.9%	99.9%	99.0%		10000	100%	100%	
	10000	100%	97.6%	100%	100%	4	500	22.8%	20.2%	1
5	1000	8.6%	6.8%	8.6 %	8.4 %		1000	51.0%	44.3%	i
	10000	54.6%	28.7%	55.6%	85.3%		5000	99.9%	99.6%	i
	80000	99.4%	84.5%	99.6%	100%		10000	100%	100%	
2 mixed	500	5.8%	16.5%	49.9%	76.8%	3 mixed	l 500	5.4%	29.6%	1
	1000	7.0%	26.9%	73.7%	95.1%		1000	8.1%	55.6%	ł
	10000	7.3%	73.2%	99.8%	100%		5000	8.3%	96.4%	ł
5 mixed	80000	5.8%	29.7%	76.7%	85.8%		10000	6.3%	99.0%	i

an i.i.d. sequence if and only if

 $\pi(Bu) = \pi(B)\pi(Su), \quad \forall u \in \mathcal{A}, \ \forall B \subset S.$

 $\mathscr{A} a \text{ Markov chain of order } m \text{ if and only if } \forall B \subset S, \forall w \in \mathcal{A}^m, \forall u \in \mathcal{A},$

$$\frac{\pi(Bwu)}{\pi(Bw)} = \frac{\pi(Swu)}{\pi(Sw)}, \quad \forall B \subset S, \quad \forall w \in \mathcal{A}^m, \quad \forall u \in \mathcal{A}$$

- In particular the ratio $\frac{\pi(Bwu)}{\pi(Bw)}$ does not depend on B.
- \succ Characterization of independence and of Markov chains
- \blacktriangleright construction of a test.
- ▶ genomic signature (see Cénac *et al.* [1])

Table 1 : The left (resp. right) hand side of the following Table shows the fraction of cases when H_0 (resp. H_1) is rejected.

\succ The choice of the partition is crucial.

- \succ The reject of long dependence Markov chains increases with the size of the partition.
- ➤ In the special case of markov chains of order-*m* given by the aggregation of *m* indepedent markov chains of order 1, the CGR-based test behaves pretty well. This illustrates the strength of the CGR: it does not impose any constraint on the input sequence besides stationarity.

References

P. Cénac, G. Fayolle, and J.M. Lasgouttes. Dynamical systems in the analysis of biological sequences. Technical Report 5351, INRIA, october 2004.
H.J. Jeffrey. Chaos Game Representation of gene structure. *Nucleic Acid. Res*, 18:2163–2170, 1990.
G. Reinert, S. Schbath, and M.S. Waterman. Probabilistic and statistical properties of words: An overview. *Journal of Computational Biology*, 7(1/2):1–46, 2000.