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Chaos Game Representation - Definition

Graphical representation of DNA in a bounded set.
» Storage tool
» Pattern visualization
» Sequences comparison (local/global)

Iterative mapping technique
» DNA sequence U = (u;)i=1...n, Where u; € {A,C,G,T}.
» The Chaos Game Representation of U, on the unit
square S is a sequence {Xy,..., X, } defined by

L lo=(0,1), fe=(1,1), bp=(1,0).
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CGR of the word ATGCGAGTGT.



Examples (2)

A

CGR of 200000 nucleotides of Chromosome 2 of Homo Sapiens (on the left)

and of Bacteroides Thetaiotaomicron (on the right).



CGR - Definition (2)

c(0,1) G(1,1) c(0,1) G(1,1)

Scc| Sgc| Scg| Sgg

Sc Sg
Sac| Stc| Sag| Stg

Sca| Sga| Sct| Sgt

Sa St
Saal Sta| Sat| Stt

A(0,0) T(1,0) A(0, 0) T(1,0)

def ) .
> Sw =Y, 4 giwrrle, + 55, where w is the word vy ... v;.

» Counting points in Sw < counting occurrences of w.

» Each point contains the whole sequence history.



Stochastic properties of the CGR

>

U is supposed to be a stationary ergodic sequence.

(X5n)n>0 is @ Markov chain of order 1, and converges almost
surely to a random vector X with distribution .

When U is i.i.d. and uniformly distributed, =« is the Lebesgue
measure on S. Whenever U is not uniformly distributed, = is
continuous, singular with respect to the Lebesgue measure.

The law of large number holds, and the empirical measures
converge.



Characterization of structure

For any word w =wvy...v;, any set B, let us define

1
Bw ¥ Ty, 0---0Ty (B), where T, (x) T §(w +4,,).

Then the stationary random sequence U is
» an i.i.d. sequence if and only if

m(Bu) = w(B)w(Su), Yue A, VB CS.

» a Markov chain of order m if and only if

w(Bwu) : m(Swu)
7(Bw) w(Sw) ’

vBcCS, VYweAA™, VYueA

m(Bwu)

= (Bw) does not depend on B.

In particular the ratio

[1 construction of a test family

[0 genomic signature



Testing the structure of a sequence (1)

» Hy :"U=wu;...u, IS an i.i.d. sequence”
» H,, :"U is a Markov chain of order m”

» H :"U is a stationary ergodic sequence”
Let us denote 7, (F) e %2?21 1¢p (X;) the empirical measure
of 7. Let u, be the (1 — §)-quantile of the normal law. Define

also

Then the set

(B, v) & \/ (ﬁn(Sv) (1-— ﬁn(Sv))) (ﬁn(B) (1-— frn(B))).
{ 7 (B) — ﬁn(Sv)frn(B)‘ > g &"(\%”) } (1)

IS a reject region with asymptotic level a of the null hypothesis
Hy against the hypothesis H \ Hy.




esting the structure of a sequence (2)

» T he choice of the most suitable B and v depends on the
distribution (p,) which is unknown in practice.

» For the test of Hy against H,,, m > 1, Reinert et al.
proposed to make use of Pearson statistics

yaer (M) = N()N(0)/(n —1))°
T NN

(2)

where N(uv) counts the occurences of uv in the sequence,
N(u-) (resp. N(-v)) is the number of 2-letter words beginning
with u (resp. ending with v). This test can be seen as a
generalized likelihood ratio test.



esting the structure of a sequence (3)

Let ¢.(d) be the (1 — «)-quantile of the chi-square distribution
2
X (d).

Then, for any partition P of S, with |P| =K > 1, where |P|
denotes the size of the partition, the set

>

’UEA

n(m, (Bv) — 7ATn(B)7ATn(S/U))2
T (B) 7 (S)

> ga((d - (K - 1)) }

IS a reject region with asymptotic level o, of a test of Hj
against H \ Hy.



esting the structure of a sequence (4)

» Hy : "U=wuq...u, IS an i.i.d. sequence”
» H,, :"U is a Markov chain of order m”
» H :"U is a stationary ergodic sequence”

Moreover, the set

{ ; 4 | 7t (Sw) 7, (Swu) 7, (Bw) L Qo (d (d = 1)(K — 1)) }

BeP

IS a reject region with asymptotic level «, of a test of H,,
against H\ H,,.



Consistence

» Assume that H\ Hy (resp. H\ H,, ) holds, and let B C S,
we A" and v € A be such that

m(Bv) # 7(B)m(Sv).

LI resp.
m(Sw)m(Bwu) # m(Bw)r(Swu).

» If B is one of the set forming the partition, then the test is
asymptotically consistent.



Numerical experiments : partitions
C(0,1) G(1,1) C(0,1) G(1,1)
A(0,0) P1 T(1,0) A(0,0) Po T(1,0)
C(0,1) G(1,1) C(0,1) G(1,1)
A(0,0) Ps3 T(1,0) A(0,0) Pa T(1,0)

The 4 different partitions

of the square [0, 1[? arbitrary chosen for the test.



Numerical experiments : results (1)

1000 sequences of length n of Markov chains of order m with random

transition matrix, for various values of n have been generated.

— N
order n Pearson Pq Po P3 Py
0 100 4.2% 3.6% 3.4% 2.5% 3.8%
500 6.1% 4.8% 4.8% 3.8% 5.2%
1000 5.0% 5.6% 6.2% 5.3% 4.9%
10000 6.5% 4.8% 5.1% 7.7% 5.8%
1 100 86.4% 12.9% 51.1% 28.9% 69.1%
500 100% 54.2% 98.7% 94.5% 99.6%
1000 100% 70.9% 99.9% 99.0% 100%
10000 100% 97.6% 100% 100% 100%
5 1000 8.6% 6.8% 8.6 % 8.4 % 8.2%
10000 54.6% 28.7% 55.6% 85.3% 51.6%
80000 99.4% 84.5% 99.6% 100% 99.6%
2 mixed 500 5.8% 16.5% 49.9% 76.8% 13.7%
1000 7.0% 26.9% 73.7% 95.1% 20.4%
10000 7.3% 73.2% 99.8% 100% 74.5%
5 mixed 80000 5.8% 29.7% 76.7% 85.8% 50.5%

Fraction of cases when Hj is rejected.




Numerical experiments

results (2)

order n Pearson Pa P3

1 500 5.2% 5.4% 3.6%
1000 4.1% 5.2% 5.4%
10000 5.3% 6.4% 6.0%

2 100 60.8% 25.8% 1.3%
500 100% 98.4% 91.6%
1000 100% 99.9% 99.6%
10000 100% 100% 100%

4 500 22.8% 20.2% 30.3%
1000 51.0% 44.3% 69.7%
5000 99.9% 99.6% 100%
10000 100% 100% 100%

3 mixed 500 5.4% 29.6% 48.5%
1000 8.1% 55.6% 79.3%
5000 8.3% 96.4% 99.8%
10000 6.3% 99.0% 100%

Fraction of cases when H; is rejected.




Numerical experiments : comments

» [ he choice of the partition is crucial.

» The reject of long dependence Markov chains increases with
the number of sets forming the partition.

» In the special case of markov chains of order-m given by the
aggregation of m indepedent markov chains of order 1, the
CGR-based test behaves pretty well. This illustrates the
strength of the CGR : it does not impose any constraint on
the input sequence besides stationarity.



Generalization to several partitions (1)

» In order to minimize the problem related to the choice of a
peculiar partition, the following test is a generalization of
the previous test, with a collection of partitions. The idea is
inspired from the generalization of Bonferroni method
described in Baraud et al (2003).

» For any set P ={P,,...P,} of partitions with K; aef Pl Ho
IS rejected as soon as one of the partition P; satisfies

PrusS -
BEPj n n
’UEA

One has to chose «; in order to have a global level «a.



Generalization to several partitions (2)

» The set
2
T, (Sw)m, (Bwu) — 1, (Swu)m, ( Bw
. 5 (7n( ) ( A) (A )7tn(Bw)) e (5) >0 b,
1<<p ol T (Sw) 7y, (Swu) 7, (Bw)

wu€eA™ x A

where §; € dm(d — 1)(K; — 1), is a reject region with asymptotic

level «, of a test of the null hypothesis H,, against the
hypothesis H \ H,,.



Generalization to several partitions (3)

1000 sequences of length n of Markov chains of order m with random

transition matrix, for various values of n have been generated.

order n {P, Py} {P, P4} {P, P2, Py}
MO 100 3.9 (4.8/5.3) 4.8 (4.0/5.3) 3.7 (4.0/5.3)
500 4.7 (4.8/5.0) 5.5 (4.8/5.0) 4.9 (4.8/5.0)
1000 4.0 (4.9/5.0) 5.8 (5.0/5.8) 4.9 (4.9/5.8)
10000 4.3 (4.7/5.0) 4.7 (4.7/5.0) 4.4 (4.7/5.0)
M1 100 83.0 (54.8/86.4) 82.3 (39.2/86.4) 81.3 (39.2/86.4)
500 99.7 (97.7/99.8) 99.8 (96.3/99.8) 99.8 (96.3/99.8)
1000 100 (99.9/100) 100 (99.6/100) 100 (99.6/100)
5000 100 (100/100) 100 (100/100) 100 (100/100)
M5 1000 8.3 (8.5/8.9) 10.6 (8.5/10.7) 7.4 (8.5/10.7)
10000 61.7 (54.5/55.0) 84.1 (55.0/83.5) 79.6 (54.5/83.5)
80000 100 (99.5/99.5) 100 (99.5/100) 100 (99.5/100)
2 mixed | 500 41.0 (7.6/48.6) 72.6 (7.6/78.2) 70.3 (7.6/78.2)
1000 66.4 (5.9/73.2) 92.1 (5.9/94.3) 91.1 (5.9/94.3)
10000 99.7 (6.8/99.9) 100 (6.8/100) 100 (6.8/100)

Fraction of cases when Hj is rejected (in %).




Application to genomes (1)

>

First, we compare the structure of non-coding sequences
with complete sequences of Homo Sapiens and Mus
Musculus, and compute the probability of acceptance of H,,
as a function of m.

In a second set of runs involving HomMo Sapiens sequences
and three partitions, the probability of acceptance is
computed as a function of the length and of the order.

In a last set of experiments, the probability of acceptance is
computed for several sequences of length 10000 taken from
various genomes as a function of m.



Application to genomes (2)
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Probability of acceptance of H,, as a function of m» for Homo Sapiens. This is the mean

of 100 sequences of length 10000.



Application to genomes (3)
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Probability of acceptance of H,, as a function of m for Mus musculus. This is the mean

of 100 sequences of length 10000.



Application to genomes (4)
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Application to genomes (5)

0-5 T T T T T T T
095 ——

0.45 Pearson
P j'Dg
Py

0.4

0.35

0.3+
0.25 -

0.2

0.15

0.1 -

0.05 \\\N

1 1 1 1 ! T I =
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

Probability of acceptance of the length » for Homo Sapiens sequences and different
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Application to genomes (6)
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Probability of acceptance of H,, as a function of m for various species, using the test built

from P, on 200 sequences of length 10000. We report the mean probability for each order.



Genomic signature

>

Deschavanne et al. use the CGR with a view to
characterizing and classifing species.

Karlin and Burge and Karlin and Mrazek use profile of
dinucleotide relative abundance values as a genomic
signature, and build taxonomy trees based on these profiles.

Dinucleotide relative abundance for nucleotide wv can be

written as
def  T(Suv)

Puv = o (Su)m(Sv)’
It is therefore tempting to define a more general CGR-based
relative abundance as

def 7 (Bv)
p(B,v) = w(B)w(Sv)’




Genomic signature (2)

» Karlin and Mrazek, Campbell et al. use the profile

. def T (Suv)

w = = - ,  Vu,v nucleotides
P i (Su)in(Sv), Y

where the empirical measures are computed from the
sequence concatenated with its inverted complement.

» |ocal stability

» advantages
[1 alignments of long sequences are generally not feasible,

[1 a tree based on distance matrix of profiles is independent
of the genome segment of 50kb used in its construction,

[1 the signature pervades both coding and non coding
DNA.



Genomic signature (3)

» Empirical CGR-based relative abundance

) def ﬁn(B'U)

BV = By i (S0)

» From N (resp. N’) sequences of a species X (resp. Y'),
pi(B,v) (resp. pi(B,v)) is associated to sequence i. For a
given partition {B,..., Bk}, the CGR-based relative
abundance difference is defined as

1 1 O 1
CAS PN DI DD

lai(BkH/U) N pA;(BkH/U)‘

i
[t
<
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b—l
i
S \
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» Karlin and Mrazek build taxonomy trees from the matrices
of measures of differences. The trees are generated with
Neighbor Joining method (Saitou and Nei, Perriére and
Gouy).



Perspectives

» Optimal choice of the partition

» Test for hidden markov models

» Model selection



