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Chaos Game Representation - De�nition

Graphial representation of DNA in a bounded set.
◮ Storage tool

◮ Pattern visualization

◮ Sequenes omparison (loal/global)

Iterative mapping tehnique

◮ DNA sequene U = (ui)i=1,...,n, where ui ∈ {A, C, G, T}.

◮ The Chaos Game Representation of U , on the unitsquare S is a sequene {X0, . . . , Xn} de�ned by















X0 = ( 1
2 , 1

2 )

Xi+1 = 1
2

(

Xi + ℓui+1

)

,

ℓA = (0, 0), ℓC = (0, 1), ℓG = (1, 1), ℓT = (1, 0).
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T CGR of the word ATGCGAGTGT.



Examples (2)

A 

C G 

T A 

C G 

T CGR of 200000 nuleotides of Chromosome 2 of Homo Sapiens (on the left)and of Bateroides Thetaiotaomiron (on the right).



CGR - De�nition (2)
A(0, 0)

C(0, 1)

T (1, 0)

G(1, 1)

Sa

S

St

Sg

A(0, 0)

C(0, 1)

T (1, 0)

G(1, 1)

SaaSaSaS
StaSgaStSg

SatStSagSg
SttSgtStgSgg

◮ Sw

def

=
∑i

k=1
1

2i−k+1 ℓvk
+ 1

2i S, where w is the word v1 . . . vi.

◮ Counting points in Sw ⇔ ounting ourrenes of w.

◮ Eah point ontains the whole sequene history.



Stohasti properties of the CGR
◮ U is supposed to be a stationary ergodi sequene.
◮ (Xn)n≥0 is a Markov hain of order 1, and onverges almostsurely to a random vetor X with distribution π.
◮ When U is i.i.d. and uniformly distributed, π is the Lebesguemeasure on S. Whenever U is not uniformly distributed, π isontinuous, singular with respet to the Lebesgue measure.

◮ The law of large number holds, and the empirial measuresonverge.



Charaterization of strutureFor any word w = v1 . . . vi, any set B, let us de�ne
Bw

def

= Tvi
◦ · · · ◦ Tv1(B), where Tvi

(x)

def
=

1

2
(x + ℓvi

).

Then the stationary random sequene U is
◮ an i.i.d. sequene if and only if

π(Bu) = π(B)π(Su), ∀u ∈ A, ∀B ⊂ S.

◮ a Markov hain of order m if and only if
π(Bwu)

π(Bw)
=

π(Swu)

π(Sw)
, ∀B ⊂ S, ∀w ∈ Am, ∀u ∈ A.

In partiular the ratio π(Bwu)
π(Bw) does not depend on B.

➠ onstrution of a test family
➠ genomi signature



Testing the struture of a sequene (1)
◮ H0 : �U = u1 . . . un is an i.i.d. sequene�

◮ Hm : �U is a Markov hain of order m�

◮ H : �U is a stationary ergodi sequene�Let us denote π̂n(E)

def

= 1
n

∑n

j=1 11{E}(Xj) the empirial measureof π. Let uα be the (1 − α
2 )-quantile of the normal law. De�nealso

σ̂n(B, v)

def

=

√

(

π̂n(Sv)
(

1 − π̂n(Sv)
)

)(

π̂n(B)
(

1 − π̂n(B)
)

)

.Then the set

{

∣

∣

∣
π̂n(Bv) − π̂n(Sv)π̂n(B)

∣

∣

∣
> uα

σ̂n(B, v)√
n

} (1)is a rejet region with asymptoti level α of the null hypothesis

H0 against the hypothesis H \ H0.



Testing the struture of a sequene (2)
◮ The hoie of the most suitable B and v depends on thedistribution (pu) whih is unknown in pratie.
◮ For the test of H0 against Hm, m ≥ 1, Reinert et al.proposed to make use of Pearson statistis

X2 def

=
∑

u,v∈A

(

N(uv) − N(u·)N(·v)/(n − 1)
)2

N(u·)N(·v)/(n − 1)
, (2)

where N(uv) ounts the ourenes of uv in the sequene,

N(u·) (resp. N(·v)) is the number of 2-letter words beginningwith u (resp. ending with v). This test an be seen as ageneralized likelihood ratio test.



Testing the struture of a sequene (3)Let qα(d) be the (1 − α)-quantile of the hi-square distribution
χ2(d).Then, for any partition P of S, with |P| = K > 1, where |P|denotes the size of the partition, the set

{

∑

B∈P
v∈A

n
(

π̂n(Bv) − π̂n(B)π̂n(Sv)
)2

π̂n(B)π̂n(Sv)
> qα

(

(d − 1)(K − 1)
)

}

,

is a rejet region with asymptoti level α, of a test of H0against H \ H0.



Testing the struture of a sequene (4)
◮ H0 : �U = u1 . . . un is an i.i.d. sequene�

◮ Hm : �U is a Markov hain of order m�

◮ H : �U is a stationary ergodi sequene�Moreover, the set

{

∑

wu∈Am
×A

B∈P

n
(

π̂n(Sw)π̂n(Bwu) − π̂n(Swu)π̂n(Bw)
)2

π̂n(Sw)π̂n(Swu)π̂n(Bw)
> qα

(

dm(d − 1)(K − 1)
)

}

,

is a rejet region with asymptoti level α, of a test of Hmagainst H \ Hm.



Consistene

◮ Assume that H \ H0 (resp. H \ Hm ) holds, and let B ⊂ S,
w ∈ Am and v ∈ A be suh that

✵

π(Bv) 6= π(B)π(Sv).

✵ resp.

π(Sw)π(Bwu) 6= π(Bw)π(Swu).

◮ If B is one of the set forming the partition, then the test isasymptotially onsistent.



Numerial experiments : partitions
A(0, 0)

C(0, 1)

T (1, 0)

G(1, 1)

P1 A(0, 0)

C(0, 1)

T (1, 0)

G(1, 1)

P2

A(0, 0)

C(0, 1)

T (1, 0)

G(1, 1)

P3 A(0, 0)

C(0, 1)

T (1, 0)

G(1, 1)

P4The 4 di�erent partitions of the square [0, 1[2 arbitrary hosen for the test.



Numerial experiments : results (1)
1000 sequenes of length n of Markov hains of order m with randomtransition matrix, for various values of n have been generated.

order n Pearson P1 P2 P3 P40 100 4.2% 3.6% 3.4% 2.5% 3.8%500 6.1% 4.8% 4.8% 3.8% 5.2%1000 5.0% 5.6% 6.2% 5.3% 4.9%10000 6.5% 4.8% 5.1% 7.7% 5.8%1 100 86.4% 12.9% 51.1% 28.9% 69.1%500 100% 54.2% 98.7% 94.5% 99.6%1000 100% 70.9% 99.9% 99.0% 100%10000 100% 97.6% 100% 100% 100%5 1000 8.6% 6.8% 8.6 % 8.4 % 8.2%10000 54.6% 28.7% 55.6% 85.3% 51.6%80000 99.4% 84.5% 99.6% 100% 99.6%2 mixed 500 5.8% 16.5% 49.9% 76.8% 13.7%1000 7.0% 26.9% 73.7% 95.1% 20.4%10000 7.3% 73.2% 99.8% 100% 74.5%5 mixed 80000 5.8% 29.7% 76.7% 85.8% 50.5%Fration of ases when H0 is rejeted.



Numerial experiments : results (2)

order n Pearson P2 P31 500 5.2% 5.4% 3.6%1000 4.1% 5.2% 5.4%10000 5.3% 6.4% 6.0%2 100 60.8% 25.8% 1.3%500 100% 98.4% 91.6%1000 100% 99.9% 99.6%10000 100% 100% 100%4 500 22.8% 20.2% 30.3%1000 51.0% 44.3% 69.7%5000 99.9% 99.6% 100%10000 100% 100% 100%3 mixed 500 5.4% 29.6% 48.5%1000 8.1% 55.6% 79.3%5000 8.3% 96.4% 99.8%10000 6.3% 99.0% 100%Fration of ases when H1 is rejeted.



Numerial experiments : omments
◮ The hoie of the partition is ruial.

◮ The rejet of long dependene Markov hains inreases withthe number of sets forming the partition.
◮ In the speial ase of markov hains of order-m given by theaggregation of m indepedent markov hains of order 1, theCGR-based test behaves pretty well. This illustrates thestrength of the CGR : it does not impose any onstraint onthe input sequene besides stationarity.



Generalization to several partitions (1)
◮ In order to minimize the problem related to the hoie of apeuliar partition, the following test is a generalization ofthe previous test, with a olletion of partitions. The idea isinspired from the generalization of Bonferroni methoddesribed in Baraud et al (2003).
◮ For any set P = {P1, . . .Pp} of partitions with Kj

def
= |Pj |, H0is rejeted as soon as one of the partition Pj satis�es

{

∑

B∈Pj

v∈A

n
(

π̂n(Bv) − π̂n(B)π̂n(Sv)
)2

π̂n(B)π̂n(Sv)
− qαj

(

(d − 1)(Kj − 1)
)

> 0

}

.

One has to hose αj in order to have a global level α.



Generalization to several partitions (2)
◮ The set

sup
1≤j≤p

{

∑

B∈Pj

wu∈Am×A

n

(

π̂n(Sw)π̂n(Bwu) − π̂n(Swu)π̂n(Bw)
)2

π̂n(Sw)π̂n(Swu)π̂n(Bw)
− qαj

(

δj

)

> 0

}

,

where δj

def

= dm(d − 1)(Kj − 1), is a rejet region with asymptotilevel α, of a test of the null hypothesis Hm against thehypothesis H \ Hm.



Generalization to several partitions (3)
1000 sequenes of length n of Markov hains of order m with randomtransition matrix, for various values of n have been generated.order n {P, P2} {P, P4} {P, P2, P4}M0 100 3.9 (4.8/5.3) 4.8 (4.0/5.3) 3.7 (4.0/5.3)500 4.7 (4.8/5.0) 5.5 (4.8/5.0) 4.9 (4.8/5.0)1000 4.0 (4.9/5.0) 5.8 (5.0/5.8) 4.9 (4.9/5.8)10000 4.3 (4.7/5.0) 4.7 (4.7/5.0) 4.4 (4.7/5.0)M1 100 83.0 (54.8/86.4) 82.3 (39.2/86.4) 81.3 (39.2/86.4)500 99.7 (97.7/99.8) 99.8 (96.3/99.8) 99.8 (96.3/99.8)1000 100 (99.9/100) 100 (99.6/100) 100 (99.6/100)5000 100 (100/100) 100 (100/100) 100 (100/100)M5 1000 8.3 (8.5/8.9) 10.6 (8.5/10.7) 7.4 (8.5/10.7)10000 61.7 (54.5/55.0) 84.1 (55.0/83.5) 79.6 (54.5/83.5)80000 100 (99.5/99.5) 100 (99.5/100) 100 (99.5/100)2 mixed 500 41.0 (7.6/48.6) 72.6 (7.6/78.2) 70.3 (7.6/78.2)1000 66.4 (5.9/73.2) 92.1 (5.9/94.3) 91.1 (5.9/94.3)10000 99.7 (6.8/99.9) 100 (6.8/100) 100 (6.8/100)Fration of ases when H0 is rejeted (in %).



Appliation to genomes (1)

◮ First, we ompare the struture of non-oding sequeneswith omplete sequenes of Homo Sapiens and MusMusulus, and ompute the probability of aeptane of Hmas a funtion of m.

◮ In a seond set of runs involving Homo Sapiens sequenesand three partitions, the probability of aeptane isomputed as a funtion of the length and of the order.

◮ In a last set of experiments, the probability of aeptane isomputed for several sequenes of length 10000 taken fromvarious genomes as a funtion of m.



Appliation to genomes (2)

Probability of aeptane of Hm as a funtion of m for Homo Sapiens. This is the meanof 100 sequenes of length 10000.



Appliation to genomes (3)

Probability of aeptane of Hm as a funtion of m for Mus musulus. This is the meanof 100 sequenes of length 10000.



Appliation to genomes (4)

Probability of aeptane of Hm funtions of m for Homo Sapiens sequenes and di�erentpartitions. The mean probability is omputed for 1000 sequenes of length 50000 andvarious orders.



Appliation to genomes (5)

Probability of aeptane of the length n for Homo Sapiens sequenes and di�erentpartitions. The mean probability is omputed for the order m = 2 and various lengths.



Appliation to genomes (6)

Probability of aeptane of Hm as a funtion of m for various speies, using the test builtfrom P2 on 200 sequenes of length 10000. We report the mean probability for eah order.



Genomi signature

◮ Deshavanne et al. use the CGR with a view toharaterizing and lassi�ng speies.

◮ Karlin and Burge and Karlin and Mràzek use pro�le ofdinuleotide relative abundane values as a genomisignature, and build taxonomy trees based on these pro�les.

◮ Dinuleotide relative abundane for nuleotide uv an bewritten as

ρuv

def
=

π(Suv)

π(Su)π(Sv)
.

◮ It is therefore tempting to de�ne a more general CGR-basedrelative abundane as
ρ(B, v)

def
=

π(Bv)

π(B)π(Sv)
,



Genomi signature (2)

◮ Karlin and Mràzek, Campbell et al. use the pro�le
ρ̂uv

def

=
π̂n(Suv)

π̂n(Su)π̂n(Sv)
, ∀u, v nuleotideswhere the empirial measures are omputed from thesequene onatenated with its inverted omplement.

◮ loal stability

◮ advantages

➣ alignments of long sequenes are generally not feasible,

➣ a tree based on distane matrix of pro�les is independentof the genome segment of 50kb used in its onstrution,

➣ the signature pervades both oding and non odingDNA.



Genomi signature (3)

◮ Empirial CGR-based relative abundane

ρ̂(B, v)

def

=
π̂n(Bv)

π̂n(B)π̂n(Sv)
.

◮ From N (resp. N ′) sequenes of a speies Σ (resp. Σ′),
ρ̂i(B, v) (resp. ρ̂′i(B, v)) is assoiated to sequene i. For agiven partition {B1, . . . , BK}, the CGR-based relativeabundane di�erene is de�ned as

δ(Σ, Σ′) =
1

N

N
∑

i=1

1

N ′

N ′
∑

j=1

1

K

K
∑

k=1

1

4

∑

v∈A

∣

∣ρ̂i(Bk, v) − ρ̂′j(Bk, v)
∣

∣.

◮ Karlin and Mràzek build taxonomy trees from the matriesof measures of di�erenes. The trees are generated withNeighbor Joining method (Saitou and Nei, Perrière andGouy).



Perspetives

◮ Optimal hoie of the partition

◮ Test for hidden markov models

◮ Model seletion


